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Abstract

We discuss a new method for handling random acoustic excitations in finite-element models. The idea is to approximate

the cross power spectral density matrix of the response by a low rank matrix. We illustrate the low rank approximation can

be computed efficiently by the implicitly restarted block Lanczos method. The novelty lies in applying the Lanczos method

to the cross power spectral density matrix of the response rather than the excitation. We give a theoretical explanation for

finite-element models with modal damping.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Vibro-acoustic models are often subjected to random excitations. Examples are acoustic diffuse fields (e.g.
in reverberant test chambers) and turbulent boundary layer excitations (e.g. in aerodynamic noise studies).

The framework for modelling such distributed excitations is the mathematical concept of (weakly)
stationary random process. Such processes are usually characterized, in the frequency domain, by power
spectra and are practically defined by referring to a reference power spectrum and a suitable spatial correlation
function.

In the time domain, a random process x has a mean zero over one period of time; the auto-correlation
function RðtÞ is the mean value of the product xðtÞxðtþ tÞ over a period of time. The power spectral density
(PSD) is the Fourier transform of the auto-correlation function and is the characterization of a random
process in the frequency domain. If x is a vector of excitations, the random process is determined by the cross
power spectral density matrix SxðoÞ. Its ði; jÞ entry is the cross correlation function for the entries i and j in x.
The diagonal elements are the auto correlation functions for the entries of x. The matrix SxðoÞ is Hermitian
positive semi-definite. See Refs. [1–5] for the theoretical background of random processes.

Let in the frequency domain, x be the excitation vector and y the output vector, where y ¼ Hx with H the
receptance matrix (the inverse of the dynamic stiffness matrix Z). Then

SyðoÞ ¼ H̄ðoÞSxH
TðoÞ, (1)
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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which is Hermitian positive semi-definite. In a simulation, we are often interested in a few diagonal entries of
Sy or the sum of the diagonal entries. In general, Z is a complex symmetric or unsymmetric matrix. In many
cases, ZðoÞ ¼ K� o2M where K, and M are the stiffness and mass matrices, respectively. For the theoretical
analysis in Section 5, we assume that Z takes the form K� o2M.

In a finite-element context, the random excitation x is usually defined on a part of the boundary surface. Let
n be the number of dofs in the finite-element model and m be the number of dofs along the loaded discrete
surface. Usually, m is significantly smaller than n. Then, we could write Sx ¼ BSpB

T where B is an n�m

prolongation matrix of rank m that maps the dofs on the loaded surface onto global dofs, and Sp is an m�m

positive definite matrix. The PSD matrix Sy has dimensions n� n, where n can be very large. Note that it is
not feasible storing Sy, since it is a dense matrix of very high dimensions: n can be of the order of 100,000.
On the other hand, Sp can be stored explicitly, since its size is typically much lower, e.g. of the order of
m ¼ 1000; . . . ; 10; 000. The goal is to approximate

Sy �WDWH ; D 2 Rr�r; W 2 Cn�r, (2)

with D a diagonal matrix. The number of columns of W is the rank of the approximation. Operations on Sy

use the factored form (2). In order to reduce the storage and computational costs, we want r to be as small as
possible, i.e. r5n and, if possible, r5m.

In earlier work [6], the pseudo load-case method was proposed that aims at producing a low rank
approximation of Sy from a low rank partial eigendecomposition of Sp. In this particular context, we propose
a new method that performs a partial eigendecomposition of Sy. The proposed method is leading to significant
improvements versus the pseudo-load case method.

The plan of the paper is as follows. Section 2 overviews the QR and Lanczos methods for eigenvalue
problems. In the Sections 3 and 4, we present two groups of methods for computing (2). In Section 3, we
present the pseudo-load case method, which has shown good performance for low frequencies and in
particular for diffuse fields [6]. Experience for turbulent boundary layers using the Corcos [7] and Goody [8]
models has shown that r approaches m, especially for higher frequencies, and the computational and storage
costs of the method become high. In Section 4, we present a new method based on the direct decomposition of
Sy using the Lanczos method. The motivation is given by the spectral analysis of Sy in Section 5. A numerical
example using the software ACTRAN [9] is shown in Section 6. The proposed example involves a realistic
random excitation.

We denote by xH the Hermitian transpose of the vector (or matrix) x. The Euclidean inner product of
vectors x and y is denoted by yHx and the induced norm by kxk.
2. Algebraic eigenvalue solvers

In this section, we give an introduction to solvers to the algebraic eigenvalue problem

AX ¼ XK,

where A is an n� n Hermitian matrix, K is a diagonal matrix with the diagonal elements being the eigenvalues
of A and the columns of X the associated eigenvectors. Since A is Hermitian, XHX ¼ I. Hence, A ¼ XKXH .
When X has n rows and p columns and K is p� p, AX ¼ XK is called a partial eigendecomposition.

Theory and practice of the QR method is described in Refs. [10]. It is a method that computes a full
decomposition, i.e. we always compute p ¼ n eigenpairs. The matrix X and the diagonal of K need to be
stored. The storage of the n� n complex matrix X is an important cost if n is large. The matrix A is first
reduced to tridiagonal form. The eigenvalues of this tridiagonal matrix are then computed by the QR method.
The work of the reduction to tridiagonal form is of the order of n3, which is a very high cost when n is large.
The matrix A needs to be available in an explicit dense or banded format for the reduction to tridiagonal form.
FORTRAN subroutines for dense linear algebra are available in the LAPACK software package [11].
The corresponding Matlab function is eig.

The Lanczos method [12] computes a partial eigendecomposition. It transforms the n� n matrix A to a
tridiagonal p� p matrix, which is much cheaper than the QR method, when p5n. The following is an



ARTICLE IN PRESS
J.-P. Coyette, K. Meerbergen / Journal of Sound and Vibration 310 (2008) 448–458450
algorithm for the Lanczos method:
Algorithm 1 [Lanczos]
1. Select a random starting vector v1 so that kv1k ¼ 1.
2. Let b0 ¼ 0 and v0 ¼ 0.
3. For j ¼ 1; . . . ; k do:

3.1. Compute wj ¼ Avj.

3.2. Update ~wj ¼ wj � bj�1vj�1.

3.3. Compute aj ¼ vH
j ~wj .

3.4. Update ŵj ¼ ~wj � ajvj .

3.5. Compute bj ¼ kŵjk.

3.6. Scale vjþ1 ¼ ŵj=bj.
The most expensive part is the matrix vector product with A in Step 3.1. Steps 3.2–3.6 compute coefficients aj

and bj using the Euclidean inner product and the induced norm. The vector v1; . . . ; vk form an orthogonal
basis of the Krylov space

spanfv1;Av1; . . . ;A
k�1v1g.

The matrix A does not have to be available in explicit format, since the only operation is a matrix–vector
product. The coefficients aj and bj are collected in a tri-diagonal matrix

Tk ¼

a1 b1

b1
. .
. . .

.

. .
. . .

.
bk�1

bk�1 ak

2
6666664

3
7777775
.

The eigenvalues of Tk are approximate eigenvalues of A.
Other inner products can be used, e.g. Steps 3.3 and 3.5 are often replaced by
Algorithm 2

3.3. Compute aj ¼ vH
j C ~wj,

3.5. Compute bj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŵ

H
j Cŵj

q
,

where C is a positive definite symmetric matrix. With C ¼ I, we obtain the Euclidean inner product. Such
inner products are, e.g. used in the Lanczos method for computing the eigenmodes of the undamped problem
Ku ¼ lMu [13]. The storage cost is of the order np where p is the number of vectors stored.

The storage of the vectors is the major memory cost of the Lanczos method. In this work, we use the
implicitly restarted Lanczos method. It is a variation on Lanczos’ method, where the basis of Lanczos vectors
is compressed from time to time by throwing away a subspace that has a small contribution to the
convergence. This is a technique that is used to keep the memory consumption low. We refer to the literature
[14,15] for technical details. Excellent software is available in ARPACK [15]. The corresponding Matlab
function is eigs.

In practice, we often use a block version of the Lanczos method [16,17,13]. In a block version, we multiply
several vectors vj with A at once rather than in a sequence. This usually leads to higher performance thanks
to the ability to use BLAS3 algebraic kernels [18]. We denote the implicitly restarted block Lanczos method
by IRBLM.

Clearly, when n is large and/or A is not available in an explicit form, only the Lanczos method is a viable
alternative to the QR method.
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3. Pseudo load case method

The conventional technique approximates Sp by the partial dominant eigendecomposition PDPH where
D 2 Rr�r and P 2 Cm�r. Next, we compute W ¼ H̄ðoÞL as the solution of ¯ZW ¼ L, where L ¼ BP can be
considered as a matrix of r pseudo load cases. Sy is then approximated by Eq. (2).

This procedure is very efficient when Sp can be approximated by a low rank matrix, and when the
computation of P and D is cheap. This assumes that there are only a few large eigenvalues of Sp. Unfortunately,
the latter is not really true for turbulent layers or higher frequencies, as we will show by examples.

Computing P and D is not expensive when r5m. We can use the (block) Lanczos method with implicit
restarting discussed in Section 2. When r approaches m, the Lanczos method is no longer most efficient. In this
case, we use the QR method [10], e.g. as implemented in LAPACK [11].

4. Lanczos method for Sy

In this section, we show two algorithms using the Lanczos method for computing a low rank approximation
of Sy. Since Sy cannot be stored in an explicit format, the QR method cannot be used.

We propose two versions of the Lanczos method. First, the direct Lanczos method applies the method to Sy.
The reduced Lanczos method solves a smaller equivalent problem, which needs less memory. The drawback,
however, is a higher computational cost. This will be explained further in this paragraph and illustrated by
numerical examples in Section 6.

4.1. Direct Lanczos method

The implicitly restarted block Lanczos method (IRBLM) discussed in Section 2 is implemented in
ACTRAN [9]. This method computes an eigenbasis while keeping the memory consumption relatively
low. The most expensive operation is the multiplication wj ¼ Syvj where vj and wj are vectors. Since
Sy ¼ Z̄

�1
BSpB

HZ�T, this requires:
�
 a multiplication with Z�T which is implemented as a solve with ZT,

�
 a matrix product with BH ,

�
 a matrix product with Sp,

�
 a matrix product with B, and

�
 a solve with Z̄.
The storage requirements can be high, since vectors of size n have to be stored; this number should be at
least 2r to make the IRBLM efficient. This heuristic choice is motivated by the fact that more than r vectors
are needed to compute r eigenvectors and that after implicit restarting more than r vectors should remain in
the basis. For more details in the choice of parameters in the implicitly restarted Lanczos method, we refer to
the ARPACK manual [15].

4.2. Reduced Lanczos method

The spectrum of Sy consists of n�m zeroes and m positive eigenvalues. We are not interested in the
nullspace of Sy. So, if we find an easy way to work with the m-dimensional range space only, we reduce the
dimension of the problem from n to m and also the size of the Lanczos vectors.

Define the n�m matrix ~B ¼ Z̄
�1
B, then Sy ¼ ~BSp

~B
H
. From Appendix A, we conclude that if

~B
H ~BSpY ¼ YK, (3)

with K diagonal and Y full rank, then

SyU ¼ UK and U ¼ ~BSpY, (4)

where U has full rank. We also derive that all nonzero eigenvalues of Sy are eigenvalues of ~B
H ~BSp.
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Since Sy is Hermitian, UHU is diagonal. The positive-definiteness of ~B
H ~B and Sp results in diagonal

Y H ð ~B
H ~BÞ�1Y and YHSpY.

As a conclusion, Eq. (3) can be viewed as a symmetric eigenvalue problem in a subspace with inner product
ðy;xÞ ¼ xHSpy. This allows for the use of the Lanczos method with Sp inner product to compute K.

Once K and Y have been computed, we can compute U from the second equation in Eq. (4).
It is important to note that the speed of convergence of the direct and reduced Lanczos methods is the same,

since Sy and ~B
H ~BSp have the same nonzero eigenvalues. The inner product in the Lanczos method using

C ¼ Sp is rather expensive. In addition, the vectors U are computed explicitly as U ¼ ~BSpY in a post-
processing step, which requires a linear solve with Z̄. This shows that the Reduced Lanczos method requires
more computation time than the Direct Lanczos method. But the storage cost of the vectors is significantly
lower. The vectors have size m rather than n, where m is the number of dofs on the (randomly) loaded surface.
Usually m5n. So, the reduced Lanczos method should only be used when the storage of Lanczos vectors
becomes prohibitive in the direct Lanczos method.

5. Spectral analysis

The key argument for using the methods proposed in Section 4 is that Sy can be well approximated by a
matrix of low rank. The theory in this section explains that even if the spectrum of Sp is dense, so that the
pseudo load case method produces r � m, the direct decomposition of Sy may lead to small r.

The spectral properties are best illustrated by an example. Consider a steel plate excited by a boundary layer
following the Corcos model [7]. Fig. 1 shows the spectra of Sx and Sy for two frequencies. We notice the
following: the spectrum of Sx becomes denser for higher frequencies. The spectrum of Sy drops to zero much
faster than the spectrum of Sx.

This shows that r is lower when the eigendecomposition of Sy is used rather than the one of Sp.
The remainder of this section is devoted to a more formal explanation for this behaviour.
The matrix Sp becomes more and more diagonally dominant for higher frequencies since the excitation

becomes more spatially uncorrelated. This explains why the eigenvalues of Sp lie closer to each other for higher
frequencies: it also makes the pseudo load case method more expensive. There is an interesting physical
interpretation here: although the excitation is spatially uncorrelated, the response is highly correlated in space,
since Sy has a few very large eigenvalues. We now explain why Sy has a few large eigenvalues.

Note that, from linear algebra theory, among all approximations of rank r to Sy, the partial
eigendecomposition produces the smallest two-norm of the error. So, in theory it is always better to perform
a direct decomposition of Sy than using a decomposition of Sp.
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Fig. 1. Spectra of Sx (dashed line, i.e. lower line) and Sy (solid line, i.e. upper line) for two frequencies. The figures show the eigenvalue

index on the horizontal axis and the value on the vertical axis. (a) shows the eigenvalues for 10Hz and (b) for 200Hz.
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In this section, we give another argument for finite-element models with modal damping, Rayleigh and
proportional damping. We assume that Z takes the form

Z ¼ U��diagðziÞU
�1,

where U ¼ ½u1; . . . ; un� are the eigenvectors of the undamped eigenvalue problem

KU ¼MUX2 with UHMU ¼ I. (5)

The coefficient zj then usually takes the form

zj ¼ kj þ iodj � o2.

In Appendix A, we show that the m nonzero eigenvalues of Sy and the eigenvalues of ~B
H ~BSp match. So, for

the spectral analysis, we study ~BH ~BSp.
The difficulty here is that we do not know the eigenvalues of ~BH ~B. The eigenvalues of ~BH ~B are the squared

singular values of ~B ¼ Z̄
�1
B. Hence, we have

~B ¼
Xn

j¼1

uju
H
j B

zj

. (6)

Usually, the sum is made over the terms with smallest zj, i.e. for the kj’s near o2. This is also the approach that
is followed by the modal truncation method. So, we can find an s so that

~B � ~Bs ¼
Xs

j¼1

uju
H
j B

zj

.

Since Z̄�1B is dominated by the modes nearest o, it is to be expected that s is small. Define

Es ¼
Xn

j¼sþ1

uju
H
j B

zj

so that ~B ¼ ~Bs þ Es.
If M is a lumped mass, i.e. M is a diagonal matrix, then uH

j ui ¼ 0 for jai. So,

~B
H ~B ¼ ~B

H

s
~Bs þ EH

s Es.

Hence, we conclude (see Appendix B) that

k ~B
H ~BSp � ~B

H

s
~BsSpk2

k ~B
H ~BSpk2

p
kEsk

2
2

k ~Bsk
2
2

�
lmaxðSpÞ

lminðSpÞ

from which we derive that if ~B can be well approximated by a matrix of rank s, so can Sy.
The spectrum of Sy is mainly dominated by the spectrum of ~B

H ~B, so the spectrum of Sy decays as

jkj þ iodj � o2j�2.

Let kj be ordered following increasing distance to o. If r is determined so that

jkrþ1 þ iodrþ1 � o2j�2ptjk1 þ iod1 � o2j�2,

we have, approximately, the following bound to the approximation error:

kSy �WrDrW
H
r k2ptkSyk2.

Since the function ðk� o2Þ
�2 decays slower when k is further away from o, smaller t may require a much

larger r.
The eigenvectors of Eq. (5) play a role in the low rank approximation of Sy in a similar way as modal

truncation. The situation may be somehow better, since only the modes that have a contribution on the faces
with the random excitation, will be taken into account.
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6. Numerical example

We compare the following methods:
PLQR
 the pseudo load case method where the QR method is used to decompose Sp,

PLL
 the pseudo load case method where the Lanczos method is used to decompose Sp,

DL
 the direct Lanczos method, i.e. the Lanczos method applied to Sy,

H

RL
 the reduced Lanczos method, i.e. the Lanczos method applied to ~B ~BSp.
The rank r was determined so that the error on the rank r approximations to Sp and Sy, respectively have a
relative error bounded from above by t ¼ 10�4. For the DL and RL methods, we then have

kSy �WrDrW
H
r k2ptkSyk2

and for the PLQR and PLL methods, we have

kSp � PrDrP
H
r k2ptkSpk2.

The computations were carried out on an Opteron running the Suse 9.2 linux operating system with 4GB of
core memory.

We are computing Sy for an application whose mesh is shown in Fig. 2. The mesh is a quarter of two
connected cylinders. The figure shows only half a single cylinder. The distributed random excitation is related
to a turbulent boundary layer acting on the external cylindrical boundary. Such dynamic FE model is targeted
for ‘low-frequency’ computations (i.e. for dynamic responses dominated by a limited number of modes). The
example involves a realistic random excitation.

We solve the problem for a coarse and a fine discretization. The coarse discretization is used to illustrate the
difference in r depending on whether Sp or Sy are decomposed. We therefore only test the methods PLQR and
DL, since we only want to show the difference between the decomposition of Sp and Sy. In fact, PLQR and
PLL produce the same r. Similarly, DL and RL produce the same r. The computations on the fine mesh are
more expensive and are used for performance testing of the four methods. Also, we compare the difference in r

for the coarse and fine meshes, which also leads to interesting conclusions.

6.1. The coarse discretization

The mesh considered for the coarse discretization consists of 690 solid shell elements and 5138 nodes. The
number of dofs is n ¼ 15; 414 and the number of dofs along the randomly loaded boundary is m ¼ 2193.
Fig. 2. Coarse mesh of the quarter cylinder.
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Table 1

Rank r for the coarse grid quarter cylinder problem

Frequency (Hz) PLQR DL Frequency (Hz) PLQR DL

100 364 40 250 1015 10

110 411 41 260 1062 24

120 441 40 270 1109 28

130 474 41 280 1155 55

140 512 41 290 1199 40

150 569 41 300 1244 19

160 616 40 310 1297 57

170 648 39 320 1345 63

180 689 36 330 1389 26

190 741 32 340 1444 50

200 793 24 350 1486 23

210 826 7 360 1528 41

220 873 19 370 1589 4

230 928 22 380 1627 69

240 964 21 390 1670 100

400 1717 77
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Fig. 3. Spectral density of the mean square velocity. The horizontal axis contains frequency (Hz), the vertical axis the PSD ððm2=s2Þ=Hz).
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Table 1 shows the rank r for the pseudo load case (PLQR) and the Lanczos (DL) methods in function of the
frequency.

From Table 1, we see the impressive difference in r between the two approaches for the same tolerance.
Moreover, r approaches m for the higher frequencies for the PLQR method.

Fig. 3 shows the PSD of mean square velocity for this problem. Note that there is no visual difference
between the results computed by the two methods.

6.2. The fine discretization

For a comparison in performance, we compare the results for the same problem, but with a finer mesh.
The mesh consists of 2760 solid shell elements and 19,933 nodes. The number of dofs is n ¼ 59; 799 and the
number of dofs along the randomly loaded boundary is m ¼ 8525. We compared the two methods for the
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Table 2

Rank r and computation times for the fine grid quarter cylinder problem

Pseudo-load methods Direct methods

PLQR PLL DL RL

100Hz

rank r 425 425 40 40

time (min) 214 16 2.7 5.5

400Hz

rank r 2383 2383 78 78

time (min) 232 248 3.3 6.3

Table 3

Comparison of r and computation times in function of the tolerance t for the fine grid model

PLL DL

100Hz 400Hz

t r time (min) r time (min)

10�2 32 2.5 12 2.2

10�3 141 5.0 36 2.8

10�4 425 15.6 78 3.3

10�5 – – 141 3.3

J.-P. Coyette, K. Meerbergen / Journal of Sound and Vibration 310 (2008) 448–458456
frequencies 100 and 400. Table 2 summarizes our results. We used p ¼ 140 Lanczos vectors in the implicitly
restarted block Lanczos method with a block size 5. The reduced Lanczos method is more expensive, since a

post-processing step is required to compute the eigenvectors of Sy from the eigenvectors of ~B
H ~BSp, see

Section 4.2. The storage of the p Lanczos vectors of length n for the DL method requires np ¼ 8; 371; 860
complex values. For the RL method, the cost is mp ¼ 1; 193; 500. The storage cost of the DL method is about
a factor seven of the cost of the RL method.

Another interesting conclusion, when we compare Tables 1 and 2, is that the number r does not change for
the DL method when the mesh is refined. The computation time for the pseudo load case methods is mainly
due to the QR method for PLQR and the Lanczos method for PLL. Note that the PLL method becomes
significantly more expensive for higher frequencies.

6.3. Comparison for different tolerances

We compare for the same problem the influence of the tolerance t. Table 3 compares the ranks and
computation times for the PLL and DL methods. We use a low frequency for the PLL method and a large
frequency for the DL method. It follows that the increase of the number of vectors is exponential. Requesting
a smaller tolerance implies a larger r and so, a higher storage cost.

7. Conclusions

The evaluation of the random vibro-acoustic response of mechanical structures has been studied by
addressing the specific issues related to the distributed nature of the excitation. Both direct and reduced
Lanczos methods have been investigated in this context and show excellent convergence properties for the
studied problem. In particular, we found that the direct decomposition of Sy leads to a faster method,
requiring a smaller rank than the pseudo load case method.



ARTICLE IN PRESS
J.-P. Coyette, K. Meerbergen / Journal of Sound and Vibration 310 (2008) 448–458 457
The reduced Lanczos method (RL) is more expensive in computation time than the direct Lanczos method
(DL), but cheaper in memory, as explained in Section 4.2. When memory consumption is not a limiting factor
in the simulation, the DL method should be used, since it is significantly faster.

The conclusions only hold for problems where the pseudo-load case method produces a large r. It is an open
question whether the proposed method performs better for other types of random excitations than the one
used in the numerical example.

Acknowledgements

This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and
Optimization), funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian State,
Science Policy Office. The scientific responsibility rests with its author(s).

Appendix A

In this appendix, we give the mathematical proof for the correspondence of the m nonzero eigenvalues of Sy

and the eigenvalues of ~B
H ~BSp.

Note that ~B is a rank m matrix. Then, the eigenvalue problem Syu ¼ lu has exactly m non-zero eigenvalues.
It follows that when la0, u lies in the range of ~B: there is a unique v so that u ¼ ~Bv. When l ¼ 0, it follows

that u lies in the nullspace of ~BH .
Multiplying Syu ¼ lu on the left by ~B

H
produces

~BH ~BSp
~BHu ¼ l ~B

H
u

~BH ~BSpv ¼ lv

with v ¼ ~B
H
ua0, from which we derive that if ðl; uÞ is an eigenpair of Sy with la0, then l is an eigenvalue of

~BH ~BSpv ¼ lv.

This is the eigenvalue problem projected on the response from the random excitations and therefore has
dimension m.

Appendix B

Let

~BH ~B� ~BH
s
~Bs ¼ EH

s Es.

In this appendix, we prove that

k ~B
H ~BSp � ~B

H

s
~BsSpk2

k ~B
H ~BSpk2

p
kEsk

2
2

k ~Bsk
2
2

�
lmaxðSpÞ

lminðSpÞ

For the denominator, note that k ~BH ~Bk2Xk ~Bsk
2
2 since

~B
H

s
~Bs and EH

s Es are both positive (semi) definite terms.
Also, k ~B

H ~BSpk2Xk
~B

H ~Bk2lminðSpÞ. For the nominator,

~B
H ~BSp � ~B

H

s
~BsSp ¼ EH

s EsSp

so,

k ~B
H ~BSp � ~B

H

s
~BsSpk2pkEsk

2
2kSpk2 ,

which concludes the proof.
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